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This paper is concerned with the evolution of small-amplitude, long-wavelength, 
resonantly forced oscillations of a liquid in a tank of finite length. It is shown that 
the surface motion is governed by a forced Korteweg4e Vries equation. Numerical 
integration indicates that the motion does not evolve to a periodic steady state unless 
there is dissipation in the system. When there is no dissipation there are cycles of 
growth and decay reminiscent of Fermi-Pasta-Ulam recurrence. The experiments of 
Chester & Bones (1968) show that for certain frequencies more than one periodic 
solution is possible. We illustrate the evolution of two such solutions for the 
fundamental resonance frequency. 

1. Introduction 
This paper is concerned with the evolution of small-amplitude, long-wavelength, 

forced oscillations of a liquid in a tank of finite length. The liquid is subject to a 
periodic excitation generated by a piston wavemaker that operates a t  resonant and 
near-resonant frequencies. The roles of nonlinearity (amplitude dispersion), frequency 
dispersion and dissipation in the evolving motion of the liquid are examined. A central 
issue is the existence of a steady periodic state, and indeed, the existence of more 
than one such state, for a given frequency. 

The study of resonant oscillations in the context of a column of gas in a closed tube 
began with the experiments of Lettau (1939), which exhibited periodic shocks 
travelling in the tube, and Betchov (1958) who gave the first theoretical explanation. 
The latter showed that the amplitude a t  resonance was finite and determined by 
amplitude dispersion. Chester (1964) gave a small-rate theory in which the transition 
from a continuous waveform away from resonance to a waveform containing shocks 
near resonance arises naturally. A finite-rate theory, which allows distortion of the 
waveform as i t  t)ravels in the tube, was given by Seymour & Mortell (1980) who 
introduced a functional equation, known as the ‘standard mapping’, which is 
intimately connected with chaotic motions; see Chirikov (1979), Mortell & Seymour 
(1980). Using the acoustic analogy, Verhagen & Wijngaarden (1965) treated the 
time-periodic response of resonantly excited shallow-water waves in a finite-length 
tank. Chester (1968) gave a theory that included the effects of frequency dispersion 
and boundary-layer damping in the walls of the tank. and Chester & Bones (1968) 
gave the confirmation between numerical and experimental results to show the 
significance of these effects. For wavemaker frequencies in a band about a resonant 
frequency, waves produced in the tank are characterized by high peaks separated by 
long troughs, and the amplitude of the response, though small, is of a larger order 
of magnitude than the wavemakcr amplitude. At wrtain discrete frcquencies abrupt 
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changes in amplitude occur, with a corrcsponding change in the signal shape. Outside 
of the resonant band the wave profilc is adequately calculated from acoustic theory. 
These results are confirmed by Ockendon & Ockendon (1973), where an asymptotic 
analysis is employed to elucidate key features of the solution. 

All the papers to which we have referred above are concerned only with the 
construction of solutions when the induced oscillations have settled down to the final 
periodic state. The first paper to address the question as to how such periodic 
oscillations might evolve from a given initial state was that of Cox & Mortell (1983). 
That paper considered the evolution of resonant oscillations of an inviscid gas in a 
closed tube from an initial state of rest. It was shown how continuous solutions and 
solutions containing shocks evolve, and how the details of the initial state are 
absorbed by shocks as time progresses even in the case when the periodic state is 
shockless. More recently, Seymour & Mortell(l985) treated the evolution of finite-rate 
oscillations of a gas in a closed tube by the analysis of a functional equation. 

I n  the present paper an evolution equation - a modified periodically forced 
Korteweg4e Vries equation - is derived for the resonant forcing of shallow-water 
waves in a tank, and the predictions are compared with the numerical and 
experimental results of Chester & Bones (1968). The order of magnitude of the 
resonant oscillations in the periodic state is larger than that of the forcing amplitude 
and, hence, of the amplitude of the fluid oscillations in the early stages of the 
evolution. The evolution equation is then dependent on the amplitude parameter to 
allow the variation with time of the order of magnitude of the solution amplitude. 
The predictions of the theory given here are confirmed by experiments. The change 
in the number of undulations in the waveform with the change in frequency is 
reproduced, and the non-uniqueness is confirmed by exhibiting the evolution of two 
distinct solutions a t  the fundamental resonance. 

It is also worthy of note that the numerical results indicate that a dissipative 
mechanism is essential for a periodic state to be attained. When dissipative effects 
are excluded from the evolution equation the numerical results indicate a recurrence 
phenomenon reminiscent of that in Zabusky & Kruskal (1965). 

I n  $2 the waves in the tank are shown to propagate according to acoustic theory, 
while the signal propagated is determined by a nonlinear functional differential 
equation. This latter equation is reduccd to a partial differential equation in $3  by 
the use of a two-variable expansion technique. The motion in the tank is thus the 
superposition of oppositely travelling, non-interacting waves where the signal 
carried by a wave is determined by a periodically forced Korteweg-de Vries equation. 
The effect of dissipation is introduced in $ 5 .  Numerical solutions are presented in $$4 
and 5 and comparison is made with the experimental results, which are mainly 
available for the periodic motions only. 

2. Formulation : derivation of functional differential equation 
Consider the two-dimensional irrotational motion of an inviscid, incompressible, 

homogeneous fluid, with density po, subject to  a constant gravitational force g.  The 
fluid, of undisturbed depth H ,  restjs on a horizontal impermeable bed located a t  
z = - H and has a free surface at  z = q(x, t ) .  The fluid is contained in a tank of finite 
length L,  closed at end x: = 0 and with an idealized wavemaker oscillating with 
maximum displacement 1 located at  x = L - 1 cos wt. 



Evolution of resonant water-wave, oscillations 101 

Waves generated in the fluid are analysed under the following assumptions. We 
assume that the length of the tank is much larger than the depth of fluid, so that 

and that the wavemaker amplitude 1 is small compared to the length of the tank, 
i.e. 

1 
s = - 4 l .  

L 
The behaviour of the fluid is characterized then by the two small dimensionless 
parameters B and 8, and approximations developed depend on the relationship 
assumed be tween those parameters. 

(2.2) 

It is convenient to express the fluid flow in the dimensionless variables: 

W L  
P I = - ,  Po "f =- 9 wt X 9' =- t ' = -  qf =rr 

ca L' X '  H '  L '  Po co 2XCa 

where 9 is the velocity potential, po  is the pressure at the free surface, pa the fluid 
density, w the frequency of the wavemaker and co = (gH$ the long-wave speed. 

In dimensionless variables (dropping the primes) the fluid has a velocity potential 
which satisfies 

a29 a29 

ax2 a22 
62-+- = 0 (0 < x < 1 - €  COSXt, - 1 < z < q(x, t ) ) ,  

subject to the boundary conditions on the free surface and on the bottom and ends 
of the tank. The bottom of the tank is impermeable, so that 

_-  " - 0  onz=-1 .  
a2 

On the free surface z = q ( x ,  t )  the dynamic and kinematic conditions imply 

and 

2 w 9 + q 9 ) 2 + 8 - 2 ( g 7 + q  at 2 ax 

9 - 8 2 [ 2 w 9 + 9 9  at ax ax = 0. 

= 0, 

a Z  

Since the tank is closed at  the end x = 0, the boundary condition is 

9 (0, 2, t )  = 0 ( -  1 < z < q(5,  t ) ) .  

u = - ( x , z , t ) = 2 m w s i n ~ t  39 ( - 1  < z < r ( x , t ) ) .  

(2.7) ax 

The wavemaker imparts a small-amplitude sinusoidal velocity at  x = 1 --E cosnt, 
which implies that 

(2.8) 

The initial conditions for the fluid flow defined by (2.3)-(2.8) are those corresponding 

ax 

to an undisturbed fluid, so that 

for t G 0 ,  - l < z < O ,  O < x < l .  (2.9) 
q = q t = O  

9, = 0 
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The aim of this section is to derive an asymptotic approximation to (2.3)-(2.9) that 
will describe the evolution of small-amplitude, large-wavelength oscillations of the 
fluid when the wavemaker is operating at  or near the fundamental resonant frequency 
w = 4. The independent parameters that control the effects of nonlinearity and 
frequency dispersion are E and Srespectively. The theory given in Chester (1968) shows 
that in the periodic state there is a balance of nonlinearity and frequency dispersion, 
while Ockendon & Ockendon (1973) give the similarity relation 

8' = KE?! (2.10) 

for the periodic motion when the amplitude is O(d) .  The similarity relationship 
usually adopted is 

see Mortell (1977) or Kevorkian & Cole (1981), but it should be noted that the 
underlying assumption is that the response amplitude is O(E) .  In the case treated here, 
while the input amplitude is O(E)  the periodic response at resonance is O(E?!), and hence 
the relationship as adopted in (2.10) ensures the appropriate balance in the periodic 
state. 

8' = K 6 ,  (2.11) 

We expand the velocity potential and free-surface shape as follows : 

(2.12) I $(x, 2 ,  t ; s )  = E$,(X,  2 ,  t ) + d $ q X ,  z,  t ) + € 2 $ , ( X ,  2, t ) + O ( R )  

y(x, t ;  E )  = €?#$)(X, t )  + E b # q X ,  t )  +s2y2(x,  t )  + O(& 

and assume that the relationship (2.10) between E and 6 holds. As we are interested 
in the response close to the fundamental acoustic resonant frequency w = f, we 
introduce the detuning parameter 1 by 

d = d A = 2 ~ - 1  (A=O(l ) ) .  (2.13) 

Substitution of (2.10)-(2.12) into equations (2.3) and (2.4) yields 

The free-surface conditions (2.5) and (2.6) then imply 

1 a40, 1 a4e0 a v o  ) ax2 
K +2A-, 

a2el aze, = 
ax2 a t 2  

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

ae, aze, ae, m, 
ax axat at axat '  

+2--+-- (2.19) 
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where qo, ql, q2 are eliminated. The condition (2.8) corresponding to an idealized 
wavemaker on the moving boundary x = 1 - B cos xt gives 

(2.20) 

(2.21) 

(2.22) 

on the fixed boundary x = 
The linear, non-dispersive approximation is given by (2.17), which gives the result 

+o = eo(x, t )  =j(t+x-i)+g(t-x) ,  (2.23) 

where f and g are arbitrary functions. The boundary conditions (2.7) on x = 0 and 
(2.20) on x = 1 imply 

h( t ) -h( t -2)  = x sinxt, (2.24) 

where h(t)  = f ( t )  andf(t-1) = g ' ( t ) .  The initial condition corresponding to (2.9) is 

h(t) = 0 (t < 0). (2.25) 

(2.26) 
For t > 0, (2.24) yields 

h(t)  = @t sin nt, 

which shows the linear growth associated with an acoustic theory of resonance. 
We shall continue to adopt the acoustic representation (2.23) for the propagation 

of the oscillations, without distortion, in the fluid, and then operate within the 
small-rate limit; see Seymour & Mortell (1980). However, we must go beyond the 
acoustic approximation and include terms corresponding to amplitude and frequency 
dispersion in deriving an equation to determine the evolution of the propagating 
signal. The necessity for the different levels of approximation to determine the mode 
of propagation and the signal propagated is recognized in the papers by Chester (1964, 
1968), Seymour & Mortell (1973, 1980) and Cox & Mortell (1983). 

On substituting for Bo from (2.23) into (2.18), we obtain the particular integral for 
MJax as 

- ael = +C(grn(t - 2) -f"'(t + x - 1 ) - *KXcf '" ( t  + 2 - 1 ) + g'"(t - x)) 
ax 

+ i A ( f ( t  + x - 1 )  -g ' ( t -  2)) + Ax(g"(t - X) + f "( t  + x - l)) ,  (2.27) 

and the complementary functions are absorbed into the presentation (2.23) for Oo. 
.It should be noted here that the terms in (2.27) are essentially due to the frequency 

dispersion, since A may be set equal to zero at  resonance. Thus the form of the 
expansions assumed in (2.11) and (2.12) brings in the frequency dispersion terms at 
O ( d ) ,  prior to the nonlinear terms at  O(s2). The particular integral for M 2 / a x  
corresponding to the nonlinear terms in (2.19) is 

3 = ix[g'( t - 2) g"(t - 2) +f (t + 2 - 1 ) f "(t  + x - 1 )] + i [ { f ( t  + x - 1)>2  - {g'(t - x)>2] ax 
+ I f ( t  + x - 1 ) g"( t - X) - g(t - x) f"( t  + x - 1 )]. (2.28) 
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The representation for u = a$/ax, from which the evolution equation for h(t)  = f ( t )  
on the boundary x = 1 will be derivcd, is 

(2.29) 

where e,, 8, and e2 are given by (2.23), (2.27) and (2.28) respectively. The terms 
neglected in (2.28) are linear functions of derivatives of f  and g and will remain 
bounded iff and g are bounded and, furthermore, correspond to no new physical effect. 
Applying the boundary condition (2.7) a t  x = 0 to  the representation (2.29) yields 
the relation 

g ' ( t )  = f ( t -  1 ) .  (2.30) 

Then the combination of the boundary conditions (2.20) and (2.21) on x = 1 applied 
to the expression (2.29), and noting thc relation (2.30), implies 

2xw sin xt = h(t)  - h(t - 2) 

+ € i [&K{h" ( t -  2) - h"(t)} -iK(httt(t-2) +h"'(t)} 

+ aA{h(t) -h(t- 2)}+ A{h'(t-2) + h'(t)}] 

+€[Sh( t )  h'(t) +h( t -  2) h'(t -2) + h y t )  -h2(t-2)) 

+h'(t-2) h ( ~ )  ds-h'(t) h(s) ds , (2.31) SI r2 1 
where h(t)  = f ( t ) .  The boundary condition (2.22) has not been used since it is a 
correction term both a t  the initial stages of the motion when the velocity u = O(s) ,  
and a t  the final stage when u = O ( E ~ ) .  

Equation (2.31), which determines the function h(t)  and hence the first approxim- 
ation to the fluid velocity and free-surface displacement, is a nonlinear differential- 
difference equation. The terms on the right-hand side of (2.31) that are independent 
of E are those corresponding to acoustic theory, the K E ~  terms are those corresponding 
to frequency dispersion, while the E terms correspond to  nonlinearity (amplitude 
dispersion) and the nonlinear interaction of oppositely travelling waves. I n  the early 
stages of the motion the amplitude is O(e)  and the acoustic terms are dominant. This 
results in linear growth of the amplitude until at O ( d )  the frequency dispersion become 
effective and eventually strikes a balance with the steepening effects of the 
nonlinearity . 

The ordinary differential equation governing the periodic motion is easily derived 
from (2.31) by seeking a solution with a period equal to that of the driver. Thus we 
obtain 

iRR' + AR' - ~KR"'  = xw sin xt ,  (2.32) 

where R(t)  = $h(t) .  (2.33) 

Equation (2.32) is essentially the result given by Ockendon & Ockendon (1973). 

3. Governing partial differential equation 
The functional differential equation (2.31) was derived in the previous section by 

incorporating into the basic approximation those terms which represent the pertinent 
physical effects. I n  this section we show how (2.31) can be reduced to a nonlinear 
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partial differential equation by the application of a two-variable expansion technique. 
Mortell(l977) and Kevorkian & Cole (1981) showed that, using appropriate variables, 
standing waves on shallow water confined to a tank of finite length satisfied a 
Korteweg-de Vries equation, which described the evolution of the signal on the 
boundaries. With the introduction of two timescales, we show here that the evolution 
of the signal on the boundary 2 = 1 is described by a periodically forced Korteweg-de 
Vries equation. 

There are two natural timescales associated with this problem - the scale identified 
by the variable t+ = t ,  which is a measure of the time for a signal to travel the length 
of the tank, and the scale 7 = d+, which measures the time over which nonlinear 
effects became significant. The validity of the following technique requires that the 
latter scale is much larger than the former. This is a small-rate assumption. We assume 
expansions of the form 

and also note that 
h(t;s) = h0(t+, 7)+Ehl(t+,  7)+  ..., 

a7 

(3.1) 

(3.2) 
h(t-2; E )  = h0(t+-2, 7)-%- ah0 (t+-2, 7)+1&~(t+-2, 7 ) +  ... . 

Solutions of (2.31) are sought which are periodic in the fast-time variable t+ with the 
same period as the wavemaker and are slowly modulated on the long timescale 7 .  

Thus we assume that 

(3.3) h,(t+-2, 7 )  = h&+, 7 )  (i = 0, 1, 2, ...). 

The functional differential equation (2.31) then reduces to 

ah ah -ah m3h0  - 
a7  at+ at+ 6 at+3 

e A + e M  A + A A - - -  - xw sinat+, (3.4) 

with ho(t+-2,7) = ho(t+, 7 ) ,  (3.5) 

on substituting (3.1), (3.2) into (2.31) and using (3.3), where terms of O(&) have been 
neglected. The physical parameters 6, e, and 2 in (3.4) are given by (2.1), (2.2) and 
(2.13) respectively. It is interesting to note that, as in the standing-wave case, 
oppositely travelling waves do not interact to this order of approximation. The 
appropriate initial condition for (3.4) is derived from (2.9) as 

hop+, 0) = 0, (3.6) 

and corresponds to the fluid in a state of rest. Since the solution of (3.4) is periodic 
in t+ with period 2, integration over one period yields the mean condition 

I: ho(s, 7 )  ds = 0. (3.7) 

This must not be interpreted as imposing a mean on the physical solution. The 
physical solution to (3.4) associated with (2.31) requires that h,(t+, 7 )  be evaluated 
along the line 7 = et+, t+ 2 0, whereas the mean condition (3.7) refers to ho(t+, 7 )  

evaluated on lines of constant 7.  

Equation (3.4) is a periodically forced Korteweg-de Vries equation with the 
periodic boundary condition (3.5). According to acoustic theory, when t = O ( B - ~ ) ,  
h, = O(e-4) (3.4) becomes 

aR aR aR a3R 
-+3R-+A--i~- = aw sinat+, a? 2 at+ at+ at+3 
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where f = I&+ and R = &ho. Equation (3.8) describes the evolution of the signal in 
the long time and may be derived by a standard perturbation expansion in powers 
of €4, which is the amplitude of the periodic motion. Such a derivation was presented 
by Jones & Hulme (1983) a t  the British Theoretical Mechanics Colloquium. The 
standing-wave result given by Mortell (1977) is recovered from (3.8) by setting the 
forcing term to zero and taking A = 0. 

If one considers the periodic motion which is independent of 7 then (3.8) 
reduces to 

dR dR d3R 
3R-+A- - - :~ -  = no sinnt. 

dt+ dt+ dt+3 (3.9) 

Equation (3.9) is identical with (2.32), which represents the long-time-periodic 
solution to the functional differential equation and is equivalent to  that obtained by 
Chester (1968) when appropriate scalings are introduced and dispersion effects are 
modelled by a differential, rather than an integral, formulation. Equation (3.4), with 
the periodicity condition (3.5) and initial condition (3.6), represents the evolution of 
the signal h, on the boundary x = 1. The velocity of the wave motion a t  any point 
in the tank is still determined by the linear relation 

3 = ho(t++2-1, 7)-ho(t+-x-1, 7), 
ax 

(3.10) 

while the signal profile is provided by the nonlinear equation (3.4). 

4. Solutions of forced Korteweg-de Vries equation 
This section presents numerical solutions of the periodically forced Kortewegde 

Vries equation (3.4). The most comprehensive experimental and numerical results 
available are those presented by Chester & Bones (1968) for the steady-state periodic 
problem of ‘sloshing’ of fluid in a tank. To present results which may be compared 
directly with those of Chester & Bones we adjust the forcing term in (3.4) to include 
the effect of an additional sinusoidal-wave generator a t  x = 0. In  the present context 
this is equivalent to replacing boundary condition (2.8) by 

(4.1) 

on x = l - s  cosnt. On using (2.5), (2.13) and (2.23) we note that, near resonance, 

u = 2nm( 1 - cos 2nw) sin nt 

the free surface a t  x = 0 is given by 

4,1z-, = -2h0(t+-l1, 7). 

With the substitution ho(t+, 7) = -fact+ + 1, 7 )  (3.4) becomes 

3fO af - afo s2 ay, 
a7 o a t +  at+ 6 at+3 

s--sBf L + A - - - - =  nw(1-cos2nw) sinnt+, (4.3) 

where fo(t+-2, 7) =f,(t+, 7). (4.4) 

fact+, 0) = 0. (4.5) 

The corresponding initial condition is then 

Nowf,(t+, 7) can be compared directly with the computed solution profile in Chester 
& Bones. The steady-state equation derived from (4.3) corresponds to that derived 
by Chester (1968) under appropriate scaling when the integral representation for 
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FIGURE 1 .  Evolution of the signal H = 3 4 :  no damping. Time r is measured in 
cycles of the wavemaker. w = 0.5, E = 0.00258, 6 = 0.083. 

frequency dispersion is replaced by a derivative representation. Additional terms 
inserted by Chester to  extend the validity of his result to regions where linear theory 
is valid and to take account of damping in the syst&m are ignored in (4.3). As already 
discussed in 53, to relate (4.3) to the physical problem i t  is necessary to evaluate 
f o ( t + ,  7 )  along the line 7 = et+. The function f o ( t + ,  7 )  need only be evaluated for 
0 < t+ < 2,  as then the periodicity condition (4.4) enables fo to be calculated for any 
value oft+. We evaluate fo(t+, 7) along the lines 

7 = ~ t + + 2 6 ( n - l ) ,  n = 1, 2, 3 ,  ... (0 < t+ < Z), (4.6) 
where n is the number of cycles of the wavemaker after start-up. It should be 
emphasized that spurious discontinuities arise iff, is instead constructed from lines 
of constant 7. 
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FIGURE 2. Modal energy normalized against the total energy for the modes with wavenumber 
W = 1 4 .  Generated harmonics are phase-locked to forcing mode W = 1 :  no damping. w = 0.5, 

E = 0.00258. 8 = 0.083. 

Details of the numerical scheme employed to solve (4.3), (4.4) and (4.6) are given 
in the Appendix. The evolution of t,he signal is displayed in figure 1 for the first 25 
cycles of the wavemaker operating at the resonant frequency w = ( A  = 0) for 
8 = 0.00258 and 6 = 0.083. We note the initial linear growth in the signal as a prelude 
to nonlinear effects becoming important. The signal exhibits amplitude growth 
followed by decay, until in cycle 22 the second harmonic is dominant. This pattern 
of growth and decay of the signal is repeated. In  cycle 66 the signal evolves to 
approximate the initial behaviour before undergoing a further cycle of growth and 
decay. The evolution of the energy content of the first four Fourier modes is presented 
in figure 2, where the total energy in each cycle of the signal is used to normalize the 
results displayed. Note that second-mode dominance recurs in cycles 43, 64 and 85. 
We also note that the higher harmonics generated in the signal are phase-locked 
to the fundamental mode, which is the mode associated with the physical forcing of 
the system. There is no indication from the numerical results that the signal settles 
down to a periodic steady state, at least over physically reasonable timescales. A 
graph of the variation of total energy per cycle with time shows growth and decay 
in periods of approximately 21 cycles with almost complete return to the initial energy 
state. Figure 2 provides numerical evidence for the instability, recognized as 
Fermi-Pasta-Ulam recurrence, of the nonlinear equation (4.3). I n  the study of 
oscillations of an anharmonic lattice, Fermi, Pasta & Ulam (1955) reported the 
repeated return of the energy of the system to approximately the initial state. In  the 
context of deep-water gravity waves Yuen & Ferguson (1978a, b )  have also 
demonstrated recurrence effects similar to  that indicated in figure 2 for a nonlinear 
Schrodinger equation. 

The experiments of Chester & Bones (1968) indicate the existence of periodic 
steady-state solutions. The theoretical model derived by Chester (1968), and from 
which his numerical results are calculated, includes the effect of boundary-layer 
damping in the walls of the tank, and pcriodic solutions are presented. It will be shown 
in the next section that the incorporation of damping into the system ensures the 
existence of a periodic state. I n  $ 5  a model for the physical system, which includes 
damping, is presented together with the numerical results. 
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5. Forced Kortewegae Vries equation with damping 
The numerical results presented in $4 indicate that in the absence of damping the 

signal profile fails to settle to a steady periodic state. In this section a mathematical 
model of the physical system, which includes damping, is presented and numerical 
solutions are given. 

Chester (1968) and Ockendon & Ockendon (1973) introduce damping into the 
system through dissipation, which occurs in the boundary layer on the walls and on 
the base of the tank. Miles (1976), in examining one-dimensional gravity waves in 
a viscous fluid, used the same mechanism. Following the method presented in 992 
and 3, inclusion of boundary-layer damping, as discussed in Chester (1968), results in 
the equation 

= nw( 1 - cos 2nw) sin nt+, (5.1) 
which replaces (4.3) as the equation governing the evolution of fo on z = 1. The 
non-dimensional constant B is given by 

L 2L 
/9 = {h+Tj Pi, 

where b is the width of the tank and V ( =  v/Lco) is the non-dimensional coefficient 
of kinematic viscosity. 

Numerical results are presented in figures 3 and 4 for the fundamental frequency 
w = ( A  = 0) and with the same physical parameters as in figures 1 and 2. Boundary- 
layer damping is included through the convolution integral in (5.1) with /9 = 0.0287. 
Figure 3 displays the profile of the evolving signal and highlights a period of initial 
linear growth and development of high peaks separated by a long trough in each 
period of the wavemaker. Now that damping is included, the numerical results 
indicate that a steady-state response is attained, and cycle 120, which approximates 
the periodic state, is displayed. Figure 4 represents the energy content of the first 
four Fourier modes that constitute the signal, and reveals the effect of boundary-layer 
damping. It is apparent that, after about 70 cycles of the piston, energy fluctuations 
are small. A plot of the total energy per cycle in the signal shows the evolution, 
through a process of damped oscillations, to a constant characterizing the steady-state 
response. 

Details of the numerical scheme employed to solve (5.1) are included in the 
Appendix. The presence of the convolution integral in (5.1) makes the numerical 
scheme ‘expensive ’. A simpler equation, which does not suffer from this disadvantage, 
and yet for small damping maintains the same solution structure as (5.1), is 

where A 4 1. 
The damping introduced in (5.3) is found in a variety of physical situations. It is 

the form of damping discussed by Ot t  & Sudan (1970) for ion-sound waves damped 
by ion-neutral collisions, and by Seymour & Mortell (1973) for energy radiation 
through one end of a closed tube and for rate dependence of a gas, in the high-frequency 
limit, in a closed tube. It is expected that, for small values of damping, the structure 
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FIQURE 5. Evolution of the signal H = 3 4 :  damping included. 
w = 0.5, E = 0.00258, 8 = 0.083, h = 0.025. 

of the signal will remain insensitive to the precise nature of the damping. This is 
confirmed by the signal trace displayed in figure 5 for (5.3) for w = + ( A  = 0), which 
is in substantial agreement with that in figure 3 when A = 0.025. Comparison of 
numerical solutions of (5.1) and (5.3) for the frequency w = 0.52 with /3 = 0.0287 and 
h = 0.025, and for w = 0.48 with the same values of /3 and A, again give substantial 
agreement. In  these latter-four cases a periodic wave profile is approximately 
attained in 120 cycles of the wavemaker. It is noted that the structure of the evolving 
signals corresponding to the given values of B and A are quite similar for the three 
frequencies (no attempt is made to find the best match of@ and A)  and the steady-state 
solutions are in good agreement. On the basis of these results we will adopt (5.3) for 
the further investigation of the effect of dissipation on the system. 

The numerical results for the evolution problem agree well with the periodic results 
given by Chester (1968). For w = 0.52 ( r  = 0.5 in Chester’s notation) a single peak 
is quickly established and is maintained in the periodic state; when w = 0.48 
( r  = -0.5) two peaks per cycle are established, and for w = 0.46 ( r  = - 1.2) three peaks 
are established. Figure 6 corresponds to the case w = 0.43 ( r  = -2.O), which lies 
outside the resonant band. The effects of nonlinearity and frequency dispersion are 
evident in the evolving signal, which eventually settles down to a periodic form well 
approximated by acoustic theory. When w = 0.59 ( r  = 2.0), outside the resonant 
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FIGURE 6. Evolution of the signal H = 3 4 :  damping included. Outside resonant band. 
w = 0.43, E = 0,00258, S = 0.083, h = 0.025. 

band, there is a beating oscillation which settles down to a periodic form which 
corresponds to acoustic theory. 

The results given above agree with those given in figure 15 of Chester & Bones in 
that the number of peaks decreases from three to one as the frequency ranges from 
w = 0.46 to 0.52. 

Chester & Bones (1968) display 'response curves', which bend over near a local 
maximum, analogous to  a hard-spring solution of Duffings' equation. This implies 
that periodic solutions of the steady-state equations are not unique, and indeed 
different periodic solutions for the same frequency are displayed. For example, for 
w = 0.5 ( r  = 0) in their figure 8 two theoretical solutions are displayed, one containing 
a single peak per period and one containing two peaks per period. Their figure 18 
indicates that  two periodic solutions were also found experimentally for w = 0.5 and 
figure 11 displays two experimental solutions for r = 1.06. 

The examples given above concern the evolution of periodic solutions from an 
initial state of rest and correspond t o  solutions on the lower branches of the response 
curves. We wished to  produce a periodic solution for the fundamental resonance 
w = 0.5, which corresponds to the upper branch of the response curve, by using the 
evolution equation (5.3). A frequency o = 0.48 was chosen for which the response 
diagram indicated a unique periodic state, and the solution of (5.3) was allowed to 
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FIGURE 7. Two possible steady-state-signal profiles of H = 3 ~ 4 .  (a )  corresponds to upper branch 
of response curve; (6) corresponds to lower branch. w = 0.5, E = 0.00258, 8 = 0.083, A = 0.025. 

evolve for increasing 7.  The applied frequency was increased by small amounts until 
w = 0.5 in the overlap domain was reached. At  each frequency increase the signal 
was allowed to evolve for some time. Figure 7 ( a )  records the steady-state solution 
for w = 0.5 obtained in this way, and it can be seen that it contains two peaks per 
period, in contrast to the lower-branch solution, figure 7 (b), which has a single peak 
per period. Thus periodic solutions of the nonlinear, dispersive equation (5.3) are 
dependent on the initial state, in contrast to periodic solutions of the corresponding 
nonlinear hyperbolic equation given in Cox & Mortell (1983) where shocks play the 
vital role of ensuring uniqueness. 

As a final example of the theory, we examine the ‘beat’ oscillation observed 
experimentally and depicted in their figure 19 by Chester & Bones (1968), which has 
a period 18 times longer than the period of the forcing term. This ‘beat ’ phenomenon 
can now be interpreted in terms of Fermi-Pasta-Ulam recurrence cycles as shown 
in figure 2, and the damping of these cycles as displayed in figure 4. For the physical 
conditions corresponding to figure 3 there is a ‘beat’ period of 21 cycles. As figure 4 
indicates, the signal evolves through a series of such cycles to the steady state 
recorded in figure 3. A period of 18 cycles was, however, recorded for the increased 
forcing amplitude 8 = 0.005 16 corresponding to figure 19 of Chester & Bones (1968) 
but computing expense prevented tracing the evolution to a steady state. Figure 8 
is a typical beat cycle for this forcing amplitude. 
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Appendix 
The numerical scheme employed to solve (4.3), (5.1) and (5.3) was proposed by 

Fornberg (1975) and applied later by Fornberg & Whitham (1978) to  the numerical 
study of the Kortewegde Vries and related equations. The scheme is a particular 
example of a pseudospectral method (Kreiss & Oliger 1972) in which the t+ 
derivatives are approximated by transforming f o  to the discrete Fourier space, where 
the derivatives are then algebraic quantities, and then transforming back to physical 
space. A leapfrog (central-difference) scheme advances the solution in 7.  

Consider the tf interval [0, 21. Over this interval we form a uniform mesh of N = 2M 
points with spaces At+ = 2/2M. Tho function f ( t+ ,  7 )  defined a t  these points is 
transformed into discrete Fourier space by 

2M-1 

j - 0  
] ( W , T )  = F{fo} = I: fo(jAt+,7)e-2niWf/2M, W =  0, f l ,  &2,  ..., fM.  (A I )  

The transformation back to physical space is accomplished by the inversion formula 

l M  
fo ( jAt+ ,  7 )  = F-l{f} = - E ] (W,  7)e2niWj/2M (A 2) 

W - - M  

with only one half the contribution of W = f M  included in the sum. These 
transformations can be handled efficiently by the fast-Fourier-Transform algorithm 
(see Cooley & Tukey 1965). The above transformations then approximate afo/at+ and 
a"fo/W3 by F-'{ixWF{f0} and - F-l{ in3 W3F{f0}} .  With a central-difference approxi- 
mation for i3fo/a7 the numerical scheme to solve (4.3) is then given by 

62 KW 

3& & 
--iA7F-'{n3~F{fO}}+- (1-cos2~w)  sinnt+. (A 3) 

The practical implementation of (A 3 )  is discussed in a technical report by Copeland 
(1977). The same basic approximation scheme is then used for (5.1) and (5.3). The 
inclusion of the damping term in (5.3) is straightforward. The evaluation of the 
convolution integral in (5.1) involves the inclusion of an additional fast Fourier 
transform. In discrete Fourier space the integral in (5.1) can be expressed as 

$/?[in J#'l+ ( 1 + i sgn W )  ~{f ,} ,  

F-'($~[$T W1i ( 1  + i sgn W )  F{fo}} ,  

(A 4) 

(A 5) 

where F is given by (A I ) ,  and in physical space as 

where F-' is given by (A 2). 
Then the numerical scheme (A 3) is readily adapted to include the contribution 
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from the additional integral term in (5.1). Due to  the expense of high-accuracy, 
long-time, numerical computation, the solution profiles are intended only for graphical 
display. Most of the calculations were carried out with a mesh size At+ = 0.03125 and 
a time step AT = 5.21 x 

As discussed in Fornberg & Whitham (1978) the leapfrog time-differencing scheme 
(A 3) may under certain circumstances be subject to separation instabilities between 
two successive time levels. To avoid separation, as suggested by Fornberg & 
Whitham, the solution was averaged, every 40 time steps, over adjacent time levels 
and then the scheme restarted with the new averaged values. A further source of 
separation occurs when every second mesh point separates from every other second 
value for a given T .  To avoid this the appropriate frequency component corresponding 
to the separation of every second mesh point was monitored throughout the 
computation and removed when irregularities were detected. Checks were also made 
to ensure that such irregularities were numerical in origin. 
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